Biotechnology has been used thousands of years ago in the manufacturing of food products. The most ancient form of biotechnology, fermentation, involved the use of microorganisms such as yeasts for the production of wine, vinegar, and bread. Dairy products such as yogurt and cheese were produced by lactic acid bacteria and molds. Although these techniques are still used, the cultures that were used in ancient times have been modified to provide high-quality products with increased yield. Modern food biotechnology has evolved into a billion-dollar industry, with the promise of producing foods that provide functions beyond the basic nutrients they contain. These functional foods or nutraceuticals have become increasingly important to consumers who are interested in the health benefits of functional foods in the prevention of illness and chronic conditions.
Biotechnology is a collection of biology-based technologies used mainly in agriculture, food science, and medicine. Agricultural biotechnology may involve the use of molecular and/or biochemical techniques to produce desired traits, while eliminating many unwanted traits in plants, through the use and manipulation of genetic information. In fact, agricultural biotechnology has been seriously affected by the new recombinant DNA technique that emerged in the 1970s. Genetic modification has significantly improved the yield, quality, and nutritional value of crop plants and animal products. It was estimated that approximately 13.3 million farmers in 25 countries were using agricultural biotechnology in 2009. This came at a time when the world sought science-based and consumer-focused approaches to solving the problem of feeding a growing population. In this respect, agricultural biotechnology is able to deliver resilient crops with enhanced yield even when they are grown in harsh environments.
Animal biotechnology also plays an important role in agriculture today. Genetic modification is used to improve livestock selection and breeding. Moreover, animal genomics is utilized to provide optimal nutritional needs for animals to generate high-quality animal products such as meat, milk, and eggs. Overall, biotechnology helps in enhancing food manufacturing processes, improving food preservation, and ensuring food safety. Thus, biotechnology provides the necessary means for the development and improvement of bioactive components in functional foods and nutraceuticals.
This book covers the various aspects of biotechnology in nutraceuticals and functional foods. The goal of the book is to provide readers with comprehensive reviews, by a panel of experts from around the world, focusing on state-of-the-art topics that are broad in scope yet concise in structure. This book is divided into six parts. The first part gives an overview of recent advances in biotechnology and their contribution to food science. The second part examines the impact of genetic modification on functional foods. The third part explores food manufacturing technology. The fourth part gives insight into quality assurance and safety of foods. The fifth part updates current views on legal, social, and regulatory aspects of food biotechnology. A final commentary concludes the book by offering an overview of future directions in the applications of biotechnology to functional foods and nutraceuticals.
[EBOOK] Biotechnology in Functional Foods and Nutraceuticals, Edited by Debasis Bagchi - Francis C. Lau - Dilip K. Ghosh, Published by CRC Press
Keyword: ebook, giáo trình, Biotechnology, Biotechnology in Functional Foods and Nutraceuticals, Biotechnology in Functional Foods, Biotechnology in Functional Nutraceuticals, Công nghệ sinh học, Công nghệ sinh học trong thực phẩm chức năng và dinh dưỡng, Công nghệ sinh học trong thực phẩm chức năng
Không có nhận xét nào:
Đăng nhận xét
levantaihg@gmail.com